Inference ======================= The inference for the track reconstruction problem is executed with: .. code-block:: none python src/trackml_inference.py \ --param tune-5 \ --cluster "transformer" \ --epoch -1 \ --event_start 8750 --event_end 9999 \ --read_tag f-0p1-hyper-5 \ --out_tag f-0p1-hyper-5 \ --rfactor 0.1 --noise_ratio 0.05 \ --node2node hyper --ncell 262144 \ --fp_dtype "float32" See more examples under ``/tests/inference*`` for different pile-up scenarios. Main parameters --------------------- The inference steering program parameters can be seen with the command ``--help``. The main parameters are: .. code-block:: none --edge_threshold 0.55 --cluster "transformer" (cut, dbscan, hdbscan) The ``edge_threshold`` parameter defines the clustering efficiency/purity/latency tradeoff. Small values retain more graph edges for the clustering stage after the GNN and load the transformer, but increase latency. Similarly with ``--cluster`` algorithm, the transformer should provide always the highest efficiency and purity, but at the cost of latency. The clustering algorithm parameters are under model hyperparameters ``/hypertrack/models/global_.py``, such as the pivot search for the transformer. More exhaustive search can improve results but at the cost of increased computing time.