Source code for icenet.optim.adam

# ADAM optimizer with polyak decay
# 
# https://github.com/nicola-decao/BNAF (MIT license)

import math
import torch

[docs] class Adam(torch.optim.Optimizer): def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, polyak=0.0): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) if not 0.0 <= polyak <= 1.0: raise ValueError("Invalid polyak decay term: {}".format(polyak)) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad, polyak=polyak) super(Adam, self).__init__(params, defaults) def __setstate__(self, state): super(Adam, self).__setstate__(state) for group in self.param_groups: group.setdefault('amsgrad', False)
[docs] def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead') amsgrad = group['amsgrad'] state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p.data) # Exponential moving average of param state['exp_avg_param'] = torch.zeros_like(p.data) if amsgrad: # Maintains max of all exp. moving avg. of sq. grad. values state['max_exp_avg_sq'] = torch.zeros_like(p.data) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] if amsgrad: max_exp_avg_sq = state['max_exp_avg_sq'] beta1, beta2 = group['betas'] state['step'] += 1 if group['weight_decay'] != 0: grad.add_(group['weight_decay'], p.data) # Decay the first and second moment running average coefficient exp_avg = exp_avg * beta1 + (1 - beta1) * grad exp_avg_sq = exp_avg_sq * beta2 + (1 - beta2) * (grad**2) if amsgrad: # Maintains the maximum of all 2nd moment running avg. till now torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) # Use the max. for normalizing running avg. of gradient denom = max_exp_avg_sq.sqrt().add_(group['eps']) else: denom = exp_avg_sq.sqrt().add_(group['eps']) bias_correction1 = 1 - beta1 ** state['step'] bias_correction2 = 1 - beta2 ** state['step'] step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1 # Update param p.data = p.data - step_size * exp_avg / denom polyak = self.defaults['polyak'] state['exp_avg_param'] = polyak * state['exp_avg_param'] + (1 - polyak) * p.data return loss
[docs] def swap(self): """ Swapping the running average of params and the current params for saving parameters using polyak averaging """ for group in self.param_groups: for p in group['params']: state = self.state[p] new = p.data p.data = state['exp_avg_param'] state['exp_avg_param'] = new
[docs] def substitute(self): for group in self.param_groups: for p in group['params']: p.data = self.state[p]['exp_avg_param']