icedqcd¶
DQCD analysis functions.
icedqcd.common¶
- load_root_file(root_path, ids=None, entry_start=0, entry_stop=None, maxevents=None, args=None)[source]¶
Loads the root files
- Parameters:
root_path – path to root files
- Returns:
jagged columnar data Y: class labels W: event weights ids: columnar variables string (list) info: trigger, MC xs, pre-selection acceptance x efficiency information (dict)
- Return type:
X
icedqcd.deploy¶
- create_ID_label(ID, mc_param, lattice_values, decimals=2)[source]¶
Create parameter label for the conditional model parameters
icedqcd.graphio¶
- parse_graph_data(X, ids, features, node_features, graph_param, Y=None, weights=None, entry_start=None, entry_stop=None, null_value=-999.0, EPS=1e-12)[source]¶
Jagged array data into pytorch-geometric style Data format array.
- Parameters:
X – Jagged Awkward array of variables
ids – Variable names as an array of strings
features – List of active global feature strings
graph_param – Graph construction parameters dict
Y – Target class array (if any, typically MC only)
weights – (Re-)weighting array (if any, typically MC only)
- Returns:
List of pytorch-geometric Data objects
icedqcd.limits¶
- plot_brazil(x, Y, s1_color=array([0., 0.96078431, 0.13333333]), s2_color=array([0.96078431, 0.96078431, 0.21960784]), horizontal_line=0.1, ylim=[0.0009, 0.2])[source]¶
Produce classic 1D “Brazil” plot
- Parameters:
x – x-axis values
Y – Y-axis values, dim = [number of points] x [-2sigma, -1sigma, median, +1sigma, +2sigma]
- Returns:
fig, ax
icedqcd.optimize¶
- func_binormal(x, a, b)[source]¶
binormal-function https://dpc10ster.github.io/RJafrocBook/binormal-model.html
b = sd0 / sd1 a = (mu1 - mu0) / sd1
- func_binormal2(x, a, b)[source]¶
Formulas 4, (14): https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5570585/pdf/nihms-736507.pdf